Self-Driving Cars Aren’t Going To Fix Our Roadways

Bus stop for autonomous vehicles in Stockholm, Sweden.

Bus stop for autonomous vehicles in Stockholm, Sweden. Shutterstock.com

 

Connecting state and local government leaders

COMMENTARY | Automated vehicles aren't going to make it solo. Humans and machines alike are going to need connected infrastructure to tame our transportation future.

There are a lot of myths around driving’s past, present and future. One common misconception is that we humans are actually good at it. A second, emerging myth is that autonomous vehicle technology alone will be the safety panacea that will save the American roadway.

As many of my fellow commuters might suspect, humans are not actually great at driving. In fact, we are simply more willing to take risks. Human drivers faced with navigating a busy left hand turn will eventually pull the trigger, even if it is not safe to proceed.

We have a frustration slide scale that builds the longer we are asked to wait. For the first couple seconds of delay, safety makes us cautious. But as our wait time increases, there is a corresponding decrease in our patience. At some point, we willingly trade safety for efficiency and make dangerous moves. Mostly this works out: other drivers will give a little, and often we were overly cautious to start with. However, when we make mistakes, the results are often deadly.

A 2009 study suggests that 42 percent of motorcycle accidents occur at intersections when drivers make unprotected turns across oncoming bikers the drivers did not see. In total, there were 37,133 traffic related deaths in the U.S. in 2017. Traffic accidents account for almost 25 percent of deaths for people aged 15 to 24 in the U.S.

Clearly, there is a huge problem with our driving. As a culture, we have largely come to accept these risks. But how much leeway are we willing to give computers in making these types of trade-offs on our behalf?

At present, very little. In March of 2018, an autonomous Uber test vehicle struck and killed a pedestrian in Tempe, Arizona. The public reaction was swift and brutal. Uber was sharply, and rightly criticized for trading down safety. But this is ironically what human drivers do every day in every city in the world—even AV safety drivers. Last October a Waymo vehicle collided with a motorcycle after the safety driver took manual control in order to help the AV navigate a lane change (Waymo claims the computer was hesitant precisely because it saw the motorcycle).

And the reality of AV tech is—despite incredible advances—there remain some fundamental hurdles. A few use cases pose particular challenges for AVs: unprotected left hand turns, lane changes in heavy traffic, obstructed lines of sight and traffic signal timing.

In recent testing, Uber’s AV fleet “needed to drive 20 percent slower to match the reaction time of a human driver at 25 mph”. Despite many years head start and millions of testing miles in development advantage, Waymo vehicles still feel frustratingly hesitant when making unprotected left hand turns.

So long as software is tasked with proving a negative (that no obstacle exists in the vehicle’s path of travel) there will always be accidents. Vehicles, like humans, can only see so much. It is very hard to know if you don’t see a pedestrian because there is no pedestrian, or because they are simply out of view around a corner or behind another object (or hidden in a sensor glitch).

These limitations are serious—88 percent of AV crashes reported to the California DMV between 2014 and 2018 occurred at traffic signals—and no amount of on-vehicle tech can ever fully solve this issue.

Evidence increasingly shows that connected infrastructure is the critical last piece of the AV puzzle.

Instead of relying exclusively on vehicle sensors to understand their surroundings, safe AVs should also be listening to the infrastructure itself. Connected infrastructure comes in several flavors, but at a minimum consists of arrays of sensors at the street level that gather data about passing road users combined with some method of communicating that data. More advanced systems employ software algorithms (AI) to analyze the data for intelligence like near misses, impending collisions, and changes in travel demand. Recently, technology is emerging that completes the loop by feeding that intelligence back into both vehicles and infrastructure in actionable ways.

For example, traffic signal sensors have long detected vehicle presence. Today, that detection is increasingly coupled with AI that assesses the probability of things like red-light violations, in real time, and then uses those estimates to actually change signal behavior. In this example, the signal might delay switching to a green light for vehicles that would cross in front of a red-light runner so that the intersection is kept clear and a collision prevented.

There are many use cases, but the takeaway is that this kind of vehicle-to-infrastructure (known as V2X) communication can augment AVs and human drivers’ awareness alike in ways that dramatically reduce the cost of mistakes. Most vehicle manufacturers and major parts suppliers are reaching the same conclusion and a vast development effort is underway to deploy advanced connected infrastructure quickly in order to pave the way for connected and autonomous vehicles.

As a result, the pace of related pilot projects has increased. GM, Audi, and Honda, for example, all have active projects running in various cities in both the U.S. and abroad to help them design best practices around V2X systems. In addition, the pace of company partnerships and startup acquisitions in this space has also picked up dramatically as large players scrambled to augment their AV efforts.

This market activity creates both challenges and opportunities for municipalities and DOTs. As the number of pilot projects increase, opportunities for forward looking cities to help shape the AV landscape are abundant. The challenges are in figuring out how to prevent fleet operators from taking shortcuts on safety that harm citizens and in ensuring that citizens are the primary beneficiaries of publicly funded transportation infrastructure.

Finally, there are ever-present security considerations that cities must take into account. Like any software system, AV networks can potentially be breached or misused by bad actors. Connected infrastructure systems are typically firewalled behind traffic signal conflict monitors that are hardwired to limit the havoc that can be created if hacked. AVs have no such protection because they are physically moving on streets. Connected infrastructure can provide a critical safety check on AV fleets by providing secondary confirmation about vehicle identity and activity.

For example, V2X is often cited as a way to allow emergency vehicles priority access to green lights. However, such devices could be stolen or spoofed giving hackers similar priority. Visual confirmation from a connected sensor can ensure that all calls for priority green are coming from appropriately authorized vehicles at appropriate times; misuse or errors are quickly detected. A rapid response is likely the best way to minimize the harm from AV problems—whether a connected vehicle hack or sensor failure. These verification systems should be an integral part of any testing project.

Kjeld Lindsted is a Product Manager at NoTraffic

NEXT STORY: Quake Early-Warning App Now Available to Anyone in Los Angeles

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.