Silicon Valley’s New Obsession

iStock.com/gorodenkoff

 

Connecting state and local government leaders

A group of tech founders, crypto billionaires, and star scientists is launching a fleet of science labs.

This article was originally published in The Atlantic. Sign up for its newsletter.

In April 2020, when the coronavirus first swept across the United States, many of America’s top scientists struggled to get funding to answer basic and urgent questions about the disease it caused. Patrick Collison, the chief executive of the payment-processing company Stripe, spied an opportunity in this market failure. He co-founded a program called Fast Grants, which raised more than $50 million that was quickly distributed to hundreds of projects. In its first 20 months, the program supported research on saliva-based tests and clinical trials for drugs, such as fluvoxamine, that could be repurposed to treat COVID-19.

The success of Fast Grants raised an uncomfortable question about how the U.S. funds innovation. If a little pop-up could unlock so many good ideas so quickly, how many potential breakthroughs are being denied every year by the traditional system of funding science?

Since the end of World War II, America’s science spending has relied on centralized agencies such as the National Institutes of Health and the National Science Foundation. The NIH and NSF have helped researchers map the human genome and accelerated the technology behind the COVID vaccines. But these bureaucracies move slowly and require arduous busywork. Today, researchers spend 10 to 40 percent of their time putting together complex grant proposals. This time suck pulls scientists away from doing real science while it nudges them toward projects that will appeal to peer-review boards rather than lead to novel breakthroughs. More generally, innovation is in a rut. Economists have concluded that progress is slowing down in the life sciences and that growth of scientific knowledge has been in decline for decades.

Now founders and investors—including tech CEOs, crypto billionaires, bloggers, economists, celebrities, and scientists—are coming together to address stasis with experimentation. They’re building a fleet of new scientific labs to speed progress in understanding complex disease, extending healthy lifespans, and uncovering nature’s secrets in long-ignored organisms. In the process, they’re making research funding one of the hottest spaces in Silicon Valley.

People have good reasons to be skeptical of any narrative that casts Silicon Valley as a white knight rescuing a troubled industry. Some of these efforts will likely fail. But I’m genuinely excited by the three science start-ups whose founders I spoke with, not only because science needs a shake-up but also because Silicon Valley needs one. After decades of building extraordinary wealth by solving often-trivial problems with digital code, tech luminaries are trying to uncover meaningful lessons about how science works.

1. Arc Institute

Problem: U.S. science funding attaches too many strings to our best researchers, preventing them from working on the most interesting problems.

Solution: Arc gives scientists no-strings-attached, multiyear funding so that they don’t have to apply for external grants.

When Fast Grants surveyed its recipients, more than 70 percent of grantees said they would change their focus “a lot” if they could deploy their grant money however they liked. This made Patrick Collison feel certain that science needs more institutes that fund people rather than projects.

In December, Collison teamed up with Silvana Konermann, a biochemistry professor at Stanford University, and Patrick Hsu, a bioengineering professor at UC Berkeley, to launch the Arc Institute. Funded with more than half a billion dollars from investors including Collison and the Ethereum billionaire Vitalik Buterin, Arc will give up to 15 core investigators eight years of no-strings-attached funding, plus a team of research assistants, to study complex diseases in any way they want to. Arc also plans to develop new life-science technologies, such as gene-editing tools, for other scientists.

Arc’s founders told me that their ambition is to build a 21st-century Bell Labs for biology. “I see Arc not as a buzzy new Silicon Valley concept but rather a return to that which has worked before,” Collison said. The NIH mostly funds specific research proposals, whereas the great industrial labs of the 20th century, such as Bell and Xerox PARC, funded researchers in a more open-ended way.

Arc’s co-founders told me they have sympathy for the NIH’s low tolerance for risk, because voters might not support their tax dollars going to some cockamamie ideas. But that’s precisely why privately funded institutions ought to reward broader curiosities, Konermann, Arc’s executive director, told me. “In the Fast Grants surveys, grantees told us that government funding was restraining work on their best ideas,” she said. “We’re funding people in an unconstrained way on the work they’re most excited about.”

Shortly after we spoke, Collison sent me an article co-authored by the scientist James Shannon, the director of the NIH in the ’50s and ’60s. “The research-project approach can be pernicious,” Shannon wrote in 1956, “if it is administered so that it produces certain specific end products, or if it provides short periods of support without assuring continuity, or if it applies overt or indirect pressure on the investigator to shift his interests to narrowly defined work set by the source of money, or if it imposes financial and scientific accounting in unreasonable detail.” Collison’s point was crystal clear: The 21st-century U.S. science-funding system has re-created the problems that its 20th-century leaders warned us about. Experiments like Arc might help us recapture a forgotten spirit of unconstrained curiosity.

2. Arcadia Science

Problem: Modern science is too siloed—both because researchers are too narrowly focused and because peer-reviewed journals stymie collaboration.

Solution: Expand the menu of species that we deeply research—and embrace an open-science policy.

once wrote that American science is held back by a trust paradox (we “trust science,” but our government doesn’t trust scientists to pursue their favorite projects) and a specialization paradox (we force scientific specialists to specialize in grant writing). Maybe I should add the biology paradox: In their research, biologists ignore the majority of living organisms. More than 90 percent of federal science funding is used to study a small number of species, including mice and yeast.

“It’s crazy to me that we are such a rich nation and yet we ignore trillions of species, knowing how much we can learn when we turn over a new rock,” Seemay Chou, a former assistant professor of biochemistry at UCSF, told me. She brought up the example of CRISPR, the promising gene-editing technology, which was first discovered by molecular biologists studying the unusual features of bacteria. “We looked at a slightly different bacteria and discovered this extraordinary potential technology for humanity,” Chou said.

Last September, she and Prachee Avasthi co-founded Arcadia, a $500 million biotech firm backed by former Y Combinator President Sam Altman and the blockchain billionaire Jed McCaleb. Like Arc, Arcadia will back researchers’ most open-ended, curiosity-driven work, but with a special focus on understudied species. Ticks, for example, have learned to manipulate our skin physiology by dulling our sensory perception when they bite, making their saliva a potential goldmine for skin-related research and therapeutics. Arcadia is looking for these sorts of treasures in biology’s overlooked corners.

Arcadia plans to publish all of its research online, without peer review or a paywall, as part of a movement known as “open science.” “We have a rule that nobody at Arcadia can publish in a journal,” Chou told me. “We believe that open science is better science. Research is meant to be openly discussed for the benefit of readers and the public, and most peer review offers a false sense of security.

3. New Science

Problem: Science is getting old, fast.

Solution: New Science sponsors young scientists.

Imagine a parallel universe in which Steve Jobs wasn’t allowed to start a company until he spent about 20 years getting a bachelor’s degree, earning a certificate in business formation, working at HP to prove his talent, and then finally earning the right to apply for grants from a federal agency that was disinclined to fund an idea as weird as the personal computer. In this parallel reality, Apple might never have been born.

This career path, ludicrous in business, is familiar to a modern academic: Get a bachelor’s degree, get a Ph.D., complete a postdoc or two, hope to join a university as an assistant professor, and then apply for funding from government agencies that might be biased against your best ideas anyway. Such a laborious process may arguably be necessary for filling young academics with the appropriate knowledge to practice or research in their field, but it also unquestionably holds young people back.

Modern science is not a young man’s game. The average age of first-time NIH grantees is 42 (and rising), and scientists younger than 35 receive less than 5 percent of federal funding. But research into “age-genius curves” has found that scientists and musicians might be most productive before they turn 40.

If the problem is obvious, the solution might be straightforward too: We need more funding for young, visionary scientists. That’s the plan at New Science, a research nonprofit led by Alexey Guzey. The institution has raised millions of dollars from donors including Buterin and Jaan Tallinn, a co-founder of Skype, which it plans to distribute to young scientists. How young? “If a really talented undergraduate applies to us with an ingenious idea, we might fund them,” Guzey told me. “That could include paying for a full-time research technician, having a scientific co-founder join them, or leveraging their talents in some other way that would not be possible in academia.”

Idon’t want to suggest that Silicon Valley might single-handedly fix America’s science problem. (The low-hanging objections—Oh, like Silicon Valley fixed our democracy problem?—are too many to count.) But nobody I spoke with for this story thinks of Silicon Valley as American science’s lonely savior. “I don’t want this to be Silicon Valley versus the scientific establishment,” Avasthi said. “I think we could all benefit from more experiments in scientific funding, and I want these experiments to reach far beyond the Bay Area.”

I am confident, however, that these experiments will reveal something important about the nature of science. For all the wonders of scientific discovery, we weirdly don’t know much for sure about how scientific discovery works; how to organize complex teams to solve wicked problems in biology; or how to get the most bang for our buck in funding these efforts. We need a better science of science, which means that, overall, we need more information. A Cambrian explosion of start-up science experiments will, if nothing else, give us plenty of data.

The monolithic U.S. science system has lost the glow of the original scientific revolution. Five hundred years ago, writers like Francis Bacon and scientists like Isaac Newton hailed the virtue of experimentation for its own sake. They championed an openness to unusual ideas, borne from a profound dissatisfaction with the status quo. Today’s science start-ups seem to march under a similar banner. Or, less grandly, they’re trying out a bunch of things. In this way, you could say Silicon Valley is not disrupting U.S. science so much as it is taking science back to its origins.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.